HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 域适应
  4. Domain Adaptation On Svhn To Mnist

Domain Adaptation On Svhn To Mnist

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
ADDN80.1Adversarial Discriminative Domain Adaptation-
CYCADA90.4CyCADA: Cycle-Consistent Adversarial Domain Adaptation-
Mean teacher99.18Self-ensembling for visual domain adaptation-
DFA-MCD98.9Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment-
DFA-ENT98.2Discriminative Feature Alignment: Improving Transferability of Unsupervised Domain Adaptation by Gaussian-guided Latent Alignment-
CDAN89.2Conditional Adversarial Domain Adaptation-
CyCleGAN (Light-weight Calibrator)97.5Light-weight Calibrator: a Separable Component for Unsupervised Domain Adaptation-
SBADA76.1From source to target and back: symmetric bi-directional adaptive GAN-
FAMCD98.76Unsupervised domain adaptation using feature aligned maximum classifier discrepancy-
SHOT98.9Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation-
MCD95.8Maximum Classifier Discrepancy for Unsupervised Domain Adaptation-
FACT90.6FACT: Federated Adversarial Cross Training-
MSTN93.3Learning Semantic Representations for Unsupervised Domain Adaptation
PFA93.9Progressive Feature Alignment for Unsupervised Domain Adaptation-
0 of 14 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili