HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 可驾驶区域检测
  4. Drivable Area Detection On Bdd100K Val

Drivable Area Detection On Bdd100K Val

评估指标

Params (M)
mIoU

评测结果

各个模型在此基准测试上的表现结果

模型名称
Params (M)
mIoU
Paper TitleRepository
TwinLiteNetPlus-Nano0.0387.3TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving-
TwinLiteNetPlus-Large1.9492.9TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving-
HybridNets12.890.5HybridNets: End-to-End Perception Network-
TwinLiteNetPlus-Medium0.4892.0TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving-
YOLOP7.991.5YOLOP: You Only Look Once for Panoptic Driving Perception-
TwinLiteNet0.4391.3TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars-
TwinLiteNetPlus-Small0.1290.6TwinLiteNetPlus: A Real-Time Multi-Task Segmentation Model for Autonomous Driving-
A-YOLOM(s)-91You Only Look at Once for Real-time and Generic Multi-Task-
YOLOPv238.993.2YOLOPv2: Better, Faster, Stronger for Panoptic Driving Perception-
0 of 9 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili