HyperAI
HyperAI超神经
首页
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
细粒度图像分类
Fine Grained Image Classification On Food 101
Fine Grained Image Classification On Food 101
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
Grafit (RegNet-8GF)
93.7
Grafit: Learning fine-grained image representations with coarse labels
-
CSWin-L
93.81
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
NAT-M4
89.4
Neural Architecture Transfer
-
NAT-M1
87.4
Neural Architecture Transfer
-
Assemble-ResNet-FGVC-50
92.5
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
-
CAP
98.6
Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification
-
DoD (SwinV2-B)
94.9
Dining on Details: LLM-Guided Expert Networks for Fine-Grained Food Recognition
-
µ2Net+ (ViT-L/16)
91.47
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
-
VOLO-D5
93.66
Learning Multi-Subset of Classes for Fine-Grained Food Recognition
EffNet-L2 (SAM)
96.18
Sharpness-Aware Minimization for Efficiently Improving Generalization
-
NAT-M2
88.5
Neural Architecture Transfer
-
ALIGN
95.88
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
-
EfficientNet-B7
93.0
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
-
ImageNet + iNat on WS-DAN
-
Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization
-
NAT-M3
89.0
Neural Architecture Transfer
-
0 of 15 row(s) selected.
Previous
Next
Fine Grained Image Classification On Food 101 | SOTA | HyperAI超神经