HyperAI
HyperAI超神经
首页
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
细粒度图像分类
Fine Grained Image Classification On Oxford 1
Fine Grained Image Classification On Oxford 1
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
OmniVec2
99.6
OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning
-
ALIGN
96.19%
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
-
AutoAugment
88.98%
AutoAugment: Learning Augmentation Policies from Data
-
TNT-B
95.0%
Transformer in Transformer
-
Bamboo (ViT-B/16)
95.1%
Bamboo: Building Mega-Scale Vision Dataset Continually with Human-Machine Synergy
-
DINOv2 (ViT-g/14, frozen model, linear eval)
96.7
DINOv2: Learning Robust Visual Features without Supervision
-
EfficientNet-B7
95.4%
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
-
OmniVec
99.2
OmniVec: Learning robust representations with cross modal sharing
-
AutoFormer-S | 384
94.9%
AutoFormer: Searching Transformers for Visual Recognition
-
NAT-M1
-
Neural Architecture Transfer
-
ViT R26 + S/32 ( Augmented)
96.28
Towards Fine-grained Image Classification with Generative Adversarial Networks and Facial Landmark Detection
-
FixSENet-154
94.8%
Fixing the train-test resolution discrepancy
-
SEER (RegNet10B)
85.3%
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
-
IELT
95.28%
Fine-Grained Visual Classification via Internal Ensemble Learning Transformer
0 of 14 row(s) selected.
Previous
Next
Fine Grained Image Classification On Oxford 1 | SOTA | HyperAI超神经