HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 图分类
  4. Graph Classification On Reddit B

Graph Classification On Reddit B

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
CRaWl93.15Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing-
WEGL92Wasserstein Embedding for Graph Learning-
δ-2-LWL89.0Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings-
GAT-GC (f-Scaled)92.57Improving Attention Mechanism in Graph Neural Networks via Cardinality Preservation-
NDP84.3Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling-
Graph-JEPA56.73Graph-level Representation Learning with Joint-Embedding Predictive Architectures-
GIN-092.4How Powerful are Graph Neural Networks?-
ApproxRepSet80.3Rep the Set: Neural Networks for Learning Set Representations-
2-WL-GNN89.4A Novel Higher-order Weisfeiler-Lehman Graph Convolution-
GraphSAGE84.3A Fair Comparison of Graph Neural Networks for Graph Classification-
DiffPool92.1Fast Graph Representation Learning with PyTorch Geometric-
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili