HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 图像生成
  4. Image Generation On Celeba 256X256

Image Generation On Celeba 256X256

评估指标

bpd

评测结果

各个模型在此基准测试上的表现结果

模型名称
bpd
Paper TitleRepository
SPN Menick and Kalchbrenner (2019)0.61Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling-
LSGM0.70Score-based Generative Modeling in Latent Space-
StyleSwin-StyleSwin: Transformer-based GAN for High-resolution Image Generation-
NCP-VAE-A Contrastive Learning Approach for Training Variational Autoencoder Priors-
MaCow (Unf)0.95MaCow: Masked Convolutional Generative Flow-
Efficient-VDVAE0.51Efficient-VDVAE: Less is more-
HiT-B-Improved Transformer for High-Resolution GANs-
StyleALAE-Adversarial Latent Autoencoders-
Glow (Kingma and Dhariwal, 2018)1.03Glow: Generative Flow with Invertible 1x1 Convolutions-
Residual Flow0.992Residual Flows for Invertible Generative Modeling-
Locally Masked PixelCNN0.74Locally Masked Convolution for Autoregressive Models-
GLF+perceptual loss (ours)-Generative Latent Flow-
MSP-Latent Space Factorisation and Manipulation via Matrix Subspace Projection-
VQGAN-Taming Transformers for High-Resolution Image Synthesis-
ANF Huang et al. (2020)0.72Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models-
NVAE w/ flow0.70NVAE: A Deep Hierarchical Variational Autoencoder-
MaCow (Var)0.67MaCow: Masked Convolutional Generative Flow-
0 of 17 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili