HyperAI
HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
图像生成
Image Generation On Celeba 256X256
Image Generation On Celeba 256X256
评估指标
bpd
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
bpd
Paper Title
Repository
SPN Menick and Kalchbrenner (2019)
0.61
Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling
-
LSGM
0.70
Score-based Generative Modeling in Latent Space
-
StyleSwin
-
StyleSwin: Transformer-based GAN for High-resolution Image Generation
-
NCP-VAE
-
A Contrastive Learning Approach for Training Variational Autoencoder Priors
-
MaCow (Unf)
0.95
MaCow: Masked Convolutional Generative Flow
-
Efficient-VDVAE
0.51
Efficient-VDVAE: Less is more
-
HiT-B
-
Improved Transformer for High-Resolution GANs
-
StyleALAE
-
Adversarial Latent Autoencoders
-
Glow (Kingma and Dhariwal, 2018)
1.03
Glow: Generative Flow with Invertible 1x1 Convolutions
-
Residual Flow
0.992
Residual Flows for Invertible Generative Modeling
-
Locally Masked PixelCNN
0.74
Locally Masked Convolution for Autoregressive Models
-
GLF+perceptual loss (ours)
-
Generative Latent Flow
-
MSP
-
Latent Space Factorisation and Manipulation via Matrix Subspace Projection
-
VQGAN
-
Taming Transformers for High-Resolution Image Synthesis
-
ANF Huang et al. (2020)
0.72
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
-
NVAE w/ flow
0.70
NVAE: A Deep Hierarchical Variational Autoencoder
-
MaCow (Var)
0.67
MaCow: Masked Convolutional Generative Flow
-
0 of 17 row(s) selected.
Previous
Next