Image Generation On Ffhq 1024 X 1024

评估指标

FID

评测结果

各个模型在此基准测试上的表现结果

模型名称
FID
Paper TitleRepository
StyleGAN3-T2.79Alias-Free Generative Adversarial Networks-
Diffusion StyleGAN22.83Diffusion-GAN: Training GANs with Diffusion-
Very Deep VAE-Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images-
Efficient-VDVAE-Efficient-VDVAE: Less is more-
StyleALAE13.09Adversarial Latent Autoencoders-
SWAGAN-Bi4.06SWAGAN: A Style-based Wavelet-driven Generative Model-
MSG-StyleGAN5.8MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks-
Polarity-StyleGAN22.57Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values-
StyleGAN4.4A Style-Based Generator Architecture for Generative Adversarial Networks-
StyleNAT4.17StyleNAT: Giving Each Head a New Perspective-
StyleGAN3-R3.07Alias-Free Generative Adversarial Networks-
StyleGAN22.84Analyzing and Improving the Image Quality of StyleGAN-
StyleSwin5.07StyleSwin: Transformer-based GAN for High-resolution Image Generation-
StyleSAN-XL1.61SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer-
CIPS10.07Image Generators with Conditionally-Independent Pixel Synthesis-
MaGNET-StyleGAN22.66MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining-
StyleGAN-XL2.02StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets-
FQ-GAN3.19Feature Quantization Improves GAN Training-
HiT-B6.37Improved Transformer for High-Resolution GANs-
StyleGAN2 ADA+bCR3.62Training Generative Adversarial Networks with Limited Data-
0 of 20 row(s) selected.