HyperAI
HyperAI超神经
首页
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
医疗编码预测
Medical Code Prediction On Mimic Iii
Medical Code Prediction On Mimic Iii
评估指标
Macro-AUC
Macro-F1
Micro-AUC
Micro-F1
Precision@15
Precision@8
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Macro-AUC
Macro-F1
Micro-AUC
Micro-F1
Precision@15
Precision@8
Paper Title
Repository
DR-CAML
89.7
8.6
98.5
52.9
54.8
69.0
Explainable Prediction of Medical Codes from Clinical Text
-
MSMN
95.0
10.3
99.2
58.4
59.9
75.2
Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic ICD Coding
-
Bi-GRU
82.2
3.8
97.1
41.7
44.5
58.5
Explainable Prediction of Medical Codes from Clinical Text
-
HAN
88.5
3.6
98.1
40.7
-
61.4
Explainable Automated Coding of Clinical Notes using Hierarchical Label-wise Attention Networks and Label Embedding Initialisation
-
Logistic Regression
56.1
1.1
93.7
27.2
41.1
54.2
Explainable Prediction of Medical Codes from Clinical Text
-
MultiResCNN
91.0
8.5
98.6
55.2
58.4
73.4
ICD Coding from Clinical Text Using Multi-Filter Residual Convolutional Neural Network
-
LAAT
91.9
9.9
98.8
57.5
59.1
73.8
A Label Attention Model for ICD Coding from Clinical Text
-
MSATT-KG
91.0
9.0
99.2
55.3
58.1
72.8
-
-
RAC
94.8
12.7
99.2
58.6
60.1
75.4
Read, Attend, and Code: Pushing the Limits of Medical Codes Prediction from Clinical Notes by Machines
-
SVM
-
-
-
44.1
-
-
Explainable Prediction of Medical Codes from Clinical Text
-
CNN
80.6
4.2
96.9
41.9
44.3
58.1
Explainable Prediction of Medical Codes from Clinical Text
-
CAML
89.5
8.8
98.6
53.9
56.1
70.9
Explainable Prediction of Medical Codes from Clinical Text
-
MSMN+KEPTLongformer
-
11.8
-
59.9
61.5
77.1
Knowledge Injected Prompt Based Fine-tuning for Multi-label Few-shot ICD Coding
-
Discnet+RE
95.6
14.0
99.3
58.8
61.4
76.5
Automatic ICD Coding Exploiting Discourse Structure and Reconciled Code Embeddings
JointLAAT
92.1
10.7
98.8
57.5
59.0
73.5
A Label Attention Model for ICD Coding from Clinical Text
-
PLM-CA
-
24.7
-
60.0
-
-
An Unsupervised Approach to Achieve Supervised-Level Explainability in Healthcare Records
-
EffectiveCAN
91.5
10.6
98.8
58.9
60.6
75.8
Effective Convolutional Attention Network for Multi-label Clinical Document Classification
-
0 of 17 row(s) selected.
Previous
Next