HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 命名实体识别 (NER)
  4. Named Entity Recognition On Conll

Named Entity Recognition On Conll

评估指标

F1

评测结果

各个模型在此基准测试上的表现结果

模型名称
F1
Paper TitleRepository
BiLSTM-CRF+ELMo93.42Deep contextualized word representations-
LUKE + SubRegWeigh (K-means)95.27SubRegWeigh: Effective and Efficient Annotation Weighing with Subword Regularization-
Pooled Flair94.13CrossWeigh: Training Named Entity Tagger from Imperfect Annotations-
Noise-robust Co-regularization + LUKE95.60Learning from Noisy Labels for Entity-Centric Information Extraction-
LSTM-CRF91.47Neural Architectures for Named Entity Recognition-
Noise-robust Co-regularization + BERT-large94.04Learning from Noisy Labels for Entity-Centric Information Extraction-
RoBERTa + SubRegWeigh (K-means)95.45SubRegWeigh: Effective and Efficient Annotation Weighing with Subword Regularization-
CrossWeigh + Pooled Flair94.28CrossWeigh: Training Named Entity Tagger from Imperfect Annotations-
CL-KL94.81Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning-
LUKE(Large)95.89LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention-
BiLSTM-CNN-CRF91.87End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF-
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili