HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 节点分类
  4. Node Classification On Amz Photo

Node Classification On Amz Photo

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
GLNN92.11± 1.08%Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation-
GraphSAGE95.03%Half-Hop: A graph upsampling approach for slowing down message passing-
HH-GraphSAGE94.55%Half-Hop: A graph upsampling approach for slowing down message passing-
NCSAGE95.93 ± 0.36Clarify Confused Nodes via Separated Learning-
HH-GCN94.52%Half-Hop: A graph upsampling approach for slowing down message passing-
CGT95.73±0.84Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures-
Graph InfoClust (GIC)90.4 ± 1.0Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning-
JK (Heat Diffusion)92.93%Diffusion Improves Graph Learning-
Exphormer95.35±0.22%Exphormer: Sparse Transformers for Graphs-
SIGN91.72 ± 1.20SIGN: Scalable Inception Graph Neural Networks-
NCGCN95.45 ± 0.45Clarify Confused Nodes via Separated Learning-
DAGNN (Ours)92%Towards Deeper Graph Neural Networks-
GCN93.59%Half-Hop: A graph upsampling approach for slowing down message passing-
CPF-ind-GAT94.10%Extract the Knowledge of Graph Neural Networks and Go Beyond it: An Effective Knowledge Distillation Framework-
0 of 14 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili