HyperAI
HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
节点分类
Node Classification On Genius
Node Classification On Genius
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
1:1 Accuracy
Paper Title
Repository
GESN
91.72 ± 0.08
Addressing Heterophily in Node Classification with Graph Echo State Networks
-
LINKX
-
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
-
ACM-GCN++
-
Revisiting Heterophily For Graph Neural Networks
-
ACMII-GCN++
-
Revisiting Heterophily For Graph Neural Networks
-
ACM-GCN+
-
Revisiting Heterophily For Graph Neural Networks
-
GPRGCN
-
Adaptive Universal Generalized PageRank Graph Neural Network
-
GCNJK
-
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
-
ACMII-GCN+
-
Revisiting Heterophily For Graph Neural Networks
-
GCNII
-
Simple and Deep Graph Convolutional Networks
-
LINK
-
New Benchmarks for Learning on Non-Homophilous Graphs
-
MixHop
-
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
-
Dual-Net GNN
-
Feature Selection: Key to Enhance Node Classification with Graph Neural Networks
GloGNN
-
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
-
L Prop 2-hop
-
New Benchmarks for Learning on Non-Homophilous Graphs
-
L Prop 1-hop
-
New Benchmarks for Learning on Non-Homophilous Graphs
-
APPNP
-
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
-
SGC 2-hop
-
Simplifying Graph Convolutional Networks
-
GloGNN++
-
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
-
C&S 1-hop
-
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
-
SGC 1-hop
-
Simplifying Graph Convolutional Networks
-
0 of 26 row(s) selected.
Previous
Next