HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 问答
  4. Question Answering On Drop Test

Question Answering On Drop Test

评估指标

F1

评测结果

各个模型在此基准测试上的表现结果

模型名称
F1
Paper TitleRepository
QDGAT (ensemble)88.38Question Directed Graph Attention Network for Numerical Reasoning over Text-
PaLM 2 (few-shot)85.0PaLM 2 Technical Report-
GPT-3 175B (few-shot, k=32)36.5Language Models are Few-Shot Learners-
GPT-4 (few-shot, k=3)80.9GPT-4 Technical Report-
NeRd81.71Neural Symbolic Reader: Scalable Integration of Distributed and Symbolic Representations for Reading Comprehension-
NumNet67.97NumNet: Machine Reading Comprehension with Numerical Reasoning-
Orca 2-7B60.26Orca 2: Teaching Small Language Models How to Reason-
GPT 3.5 (few-shot, k=3)64.1GPT-4 Technical Report-
Orca 2-13B57.97Orca 2: Teaching Small Language Models How to Reason-
POET87.6Reasoning Like Program Executors-
BERT32.7DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs-
BERT+Calculator (ensemble)81.78Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension-
NAQA Net47.01DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs-
GenBERT (+ND+TD)72.4Injecting Numerical Reasoning Skills into Language Models-
MTMSN Large79.88A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning-
TASE-BERT80.7A Simple and Effective Model for Answering Multi-span Questions-
0 of 16 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili