HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. SMAC
  4. Smac On Smac 27M Vs 30M

Smac On Smac 27M Vs 30M

评估指标

Average Score
Median Win Rate

评测结果

各个模型在此基准测试上的表现结果

模型名称
Average Score
Median Win Rate
Paper TitleRepository
DMIX19.4385.45DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning-
VDN18.4563.12DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning-
DIQL14.456.02DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning-
QMIX19.4184.77DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning-
Heuristic-0The StarCraft Multi-Agent Challenge-
DDN19.7191.48DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning-
QPLEX19.3378.12A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning-
DPLEX19.6290.62A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning-
IQL14.012.27DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning-
QMIX-49The StarCraft Multi-Agent Challenge-
QMIX-49Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning-
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili