HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 无监督域适应
  4. Unsupervised Domain Adaptation On Sim10K To 3

Unsupervised Domain Adaptation On Sim10K To 3

评估指标

mAP@0.5

评测结果

各个模型在此基准测试上的表现结果

模型名称
mAP@0.5
Paper TitleRepository
SADA (ResNet50-FPN, 1024px)71.8Align and Distill: Unifying and Improving Domain Adaptive Object Detection-
ILLUME53.1To miss-attend is to misalign! Residual Self-Attentive Feature Alignment for Adapting Object Detectors
MRT62.0Masked Retraining Teacher-Student Framework for Domain Adaptive Object Detection
ALDI-YOLO (1024px)75.0Align and Distill: Unifying and Improving Domain Adaptive Object Detection-
UMT (ResNet50-FPN, 1024px)58.7Align and Distill: Unifying and Improving Domain Adaptive Object Detection-
MIC (ResNet50-FPN, 1024px)73.1Align and Distill: Unifying and Improving Domain Adaptive Object Detection-
MILA57.4MILA: Memory-Based Instance-Level Adaptation for Cross-Domain Object Detection-
ViSGA52.1Seeking Similarities over Differences: Similarity-based Domain Alignment for Adaptive Object Detection-
AT (ResNet50-FPN, 1024px)72.0Align and Distill: Unifying and Improving Domain Adaptive Object Detection-
AWADA54.1AWADA: Attention-Weighted Adversarial Domain Adaptation for Object Detection-
PT (ResNet50-FPN, 1024px)70.6Align and Distill: Unifying and Improving Domain Adaptive Object Detection-
ALDI++ (ResNet50-FPN, 1024px)78.2Align and Distill: Unifying and Improving Domain Adaptive Object Detection-
0 of 12 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili