Video Retrieval On Fivr 200K

评估指标

mAP (CSVR)
mAP (DSVR)
mAP (ISVR)

评测结果

各个模型在此基准测试上的表现结果

模型名称
mAP (CSVR)
mAP (DSVR)
mAP (ISVR)
Paper TitleRepository
ViSiLf0.7970.8430.660ViSiL: Fine-grained Spatio-Temporal Video Similarity Learning-
TCAc0.5530.570 0.473Temporal Context Aggregation for Video Retrieval with Contrastive Learning-
DnS (S^f_B)0.8630.9090.729DnS: Distill-and-Select for Efficient and Accurate Video Indexing and Retrieval-
ViSiLsym0.7920.8330.654ViSiL: Fine-grained Spatio-Temporal Video Similarity Learning-
VRAG (CS)0.6780.7230.554VRAG: Region Attention Graphs for Content-Based Video Retrieval-
ViSiLv (pt)0.8540.8990.723ViSiL: Fine-grained Spatio-Temporal Video Similarity Learning-
DnS (S^c)0.558 0.574 0.476DnS: Distill-and-Select for Efficient and Accurate Video Indexing and Retrieval-
S2VS0.8790.9270.746Self-Supervised Video Similarity Learning-
Jo et al. (SCFV+TNIP)0.8330.8960.674Exploring the Temporal Cues to Enhance Video Retrieval on Standardized CDVA
TCAf0.830 0.8770.703Temporal Context Aggregation for Video Retrieval with Contrastive Learning-
TCAsym0.6980.7280.592Temporal Context Aggregation for Video Retrieval with Contrastive Learning-
ViSiLv (tf)0.841 0.8920.702ViSiL: Fine-grained Spatio-Temporal Video Similarity Learning-
VVS0.6890.711 0.590VVS: Video-to-Video Retrieval with Irrelevant Frame Suppression-
S2VS0.8780.9250.739Self-Supervised Video Similarity Learning-
DnS (S^f_A)0..8750.921 0.741DnS: Distill-and-Select for Efficient and Accurate Video Indexing and Retrieval-
VRAG (video)0.4700.4840.399VRAG: Region Attention Graphs for Content-Based Video Retrieval-
LAMV0.4660.4960.371LAMV: Learning to Align and Match Videos With Kernelized Temporal Layers
0 of 17 row(s) selected.
Video Retrieval On Fivr 200K | SOTA | HyperAI超神经