HyperAI
HyperAI超神经
首页
资讯
论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
视觉问答 (VQA)
Visual Question Answering On Vqa V2 Test Std
Visual Question Answering On Vqa V2 Test Std
评估指标
overall
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
overall
Paper Title
Repository
LXMERT
72.5
LXMERT: Learning Cross-Modality Encoder Representations from Transformers
-
2D continuous softmax
66.27
Sparse and Continuous Attention Mechanisms
-
VisualBERT
71
VisualBERT: A Simple and Performant Baseline for Vision and Language
-
X2-VLM (large)
81.8
X$^2$-VLM: All-In-One Pre-trained Model For Vision-Language Tasks
-
Image features from bottom-up attention (adaptive K, ensemble)
70.3
Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge
-
MCB [11, 12]
62.27
Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering
-
Up-Down
70.34
Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
-
Prompt Tuning
78.53
Prompt Tuning for Generative Multimodal Pretrained Models
-
MCANed-6
70.9
Deep Modular Co-Attention Networks for Visual Question Answering
-
BEiT-3
84.03
Image as a Foreign Language: BEiT Pretraining for All Vision and Vision-Language Tasks
-
VLMo
81.30
VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts
-
VALOR
78.62
VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset
-
BLOCK
67.9
BLOCK: Bilinear Superdiagonal Fusion for Visual Question Answering and Visual Relationship Detection
-
mPLUG-Huge
83.62
mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal Skip-connections
-
DMN
68.4
Learning to Count Objects in Natural Images for Visual Question Answering
-
BGN, ensemble
75.92
Bilinear Graph Networks for Visual Question Answering
-
SimVLM
80.34
SimVLM: Simple Visual Language Model Pretraining with Weak Supervision
-
VL-BERTLARGE
72.2
VL-BERT: Pre-training of Generic Visual-Linguistic Representations
-
Single, w/o VLP
74.16
In Defense of Grid Features for Visual Question Answering
-
Single, w/o VLP
73.86
Deep Multimodal Neural Architecture Search
-
0 of 38 row(s) selected.
Previous
Next
Visual Question Answering On Vqa V2 Test Std | SOTA | HyperAI超神经