HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 零样本视频问答
  4. Zero Shot Video Question Answer On Intentqa

Zero Shot Video Question Answer On Intentqa

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
IG-VLM65.3An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM-
VideoTree (GPT4)66.9VideoTree: Adaptive Tree-based Video Representation for LLM Reasoning on Long Videos-
VidCtx (7B)67.1VidCtx: Context-aware Video Question Answering with Image Models-
LLoVi (GPT-4)64.0A Simple LLM Framework for Long-Range Video Question-Answering-
LangRepo (12B)59.1Language Repository for Long Video Understanding-
SeViLA (4B)60.9Self-Chained Image-Language Model for Video Localization and Question Answering-
LVNet71.1Too Many Frames, Not All Useful: Efficient Strategies for Long-Form Video QA-
ENTER71.5ENTER: Event Based Interpretable Reasoning for VideoQA-
LLoVi (7B)53.6A Simple LLM Framework for Long-Range Video Question-Answering-
Mistral (7B)50.4Mistral 7B-
TS-LLaVA-34B67.9TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models-
SlowFast-LLaVA-34B60.1SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language Models-
Random20.0--
0 of 13 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili